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Simulation of adhesive contact with molecular potential

1 Project description

In the project, we will investigate the adhesive contact between a soft tip with rough surface and a rigid
substrate, see Fig. a). Since the tip size is much smaller than the substrate, we take the substrate to be
semi-infinite. The profile of the rough surface of tip in the reference configuration is given by

xg(xl):%JrA {1c0s<27r;1>} (1)

where the first term is a parabola shape with maximum curvature R and the second term is a sinusoid
undulation with wavelength A and amplitude A. We take A\, A < R to represent the small scale roughness
of the surface. The tip material is described by Neo-Hookean model as discussed in the class. We model the
adhesive contact behavior by assuming that the tip and substrates material points interact with one another
through the Lennard-Jones type interaction potential

trmae[- 2+ (6)"] g

where € and o are constants and have units of energy and length respectively, r is the distance between two
points. The interaction force between the tip and substrate material point is obtained by differentiating the
interaction potential. Since the substrate is semi-infinite large and rigid, the body force acted on the tip
material point and the work of adhesion of the material can be derived analytically. Due to symmetry, the
only nonzero component of body force is

g =t [ (7)< (2)

as shown in Fig. b), where p; and pg are the tip and substrate densities. The work of adhesion is

3)

1/9\/3
w=4<15) Tepspro” (4)

Note that the body force is described in the deformed configuration. Rewrite eq. [3]in the reference configu-

1 o 10 1 o 4
ba(x) = dmeo? ppl.] " (x) [5 ( z W) - ( z u) ] (5)

where us is the displacement in é; direction.

ration we have

2 Governing equations

The equilibrium equation in the deformed configuration is

00,
DG =0 in V
Byj

oijng =t; on S

u; =wu; on S

where o;; is the Cauchy stress. Let n; be the test function with 7; = u} on S;. The weak form is

on;
/ aijgin, dV—/ bin; dV — tinidA =0 (7)
1% y] 1% So
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Figure 1: (a) The schematic of adhesive contact between the soft indenter and semi-infinite rigid substrate
and (b) the Lennard-Jones type body force.

Map the integral over the deformed configuration to the reference configuration we have
on; 0 0 _
Tija_ dVp — bin; dVo — t;nidAg =0 (8)
Vo Yj Vo S9

where 73; = J - 05 is the Kirchoff stress, b) = J - b;, and t? is the traction mapped back to the reference
configuration. In the project, the body force is dependent on the position as described by eq. [6] and for
simplicity, the traction boundary condition is not considered. Hence the third term on the left hand side of
the weak form is zero.

3 FE implementation

Introduce FE intepolation
ui = N*(x)ui, ni = N*(x)n; (9)

?

Substitute into the weak form we obtain

R{[u}] + Bf[u}] = F{' (10)
where aNe
R? :/ Tij Bkl —dV
Vo ][ ] 8y] 0
B = —/ VN dVy (11)
Vo

Ff = / tIN*dA,
53

Note that the force vector B is now a function of displacement since the body force is nonuniform distributed

given by
1/ o \° 1/ o \*
W = dneo?pspQ8io | = S
' TeT PPt iz 5 T; + U 2 x; + u;

No summation of ¢ here. The nonlinear equation will be solved using Newton-Raphson iteration. Start with
initial guess w{ and try to correct the guess with correction dwy. Linearizing eq. 10 in dw{ yields a system
of linear equation

(12)

(K, + KLy )dwy = =R} — BY + Ff! (13)
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to solve for dw$, where the term K[, is the usual one we derived in the class. The new term KZ,, appearing
in the stiffness matrix is

oB¢ obY
KB, — 27 _ _ LN dV 14
aibk auz Vo 8“2 0 ( )

Everything is familar except the new term we need to take care of. The FE procedure will be implemented

with UEL in ABAQUS.
1 /0 10 1 /0o 4
A I 1
f() 5(%) 2(y) (15)

Let us denote
To avoid f(y;) goes to infinity as y; = 0, we can set the body force to the following form:

i i), i > A
b = 2c0f (i) Yy (16)
dizco [h+ k- (yi —A)], <A
where co = 4mea?pspy, A is a very small positive parameter. For example, we can take A = 0.50, and
984
h = fly=a = 5
LA o (7
- dys = a
Therefore, for y; > A,
10 4
1 o 1 o
B = — 0; - - = N*dV, 18
i /Vo 2Co l5 (JTH-Ui) 2<$i+ui) 1 0 ( )
and . 1
20 20
KB, =—1[ 29 - NN’ av; 19
aibk /‘/O 2kC0 |:(xZ +u1)5 (.’El +u7:)11:| 0 ( )
For y; < A,
B =— | bisco[h+ k- (yi — A)N*dVy (20)
Vo
and
Koy =— | bancok - N*N®dVq (21)

Vo

4 Benchmarks

In this section, we verify the UEL subroutine by several simple test cases. In cases 1-3, the simple body
forces (Fig. (b—d)) are applied to a single element (1x1 in size), which is specified with a rigid body motion
in the -é; direction (Fig. 2a)). The body forces have the form

Case 1: by =1.0

0, r>mrg
Case 2: by = 1.0—%7 O<r<rmrg
1.0, <0
(22)
0, r>3rg
—3.0+ L, 2rp<r<3
Case 3: by = Tt rosr "o
1.0—%7 0<r<2rg
1.0, <0
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The parameter rq is set to be 1.0. The total reaction force of the element, for the three cases, is shown in
Fig. [3] which is the same as the exact solution. The total force is negative since a positive body force is
applied.
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Figure 2: Schematic of element test with three simple body forces.
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Figure 3: The reaction force F» of the element with rigid body motion in test cases 1-3.

In test case 4, we compare the Hertz contact simulation of the body force method with that in ABAQUS/CAE.
The contact of a elastic indenter of radius 2.5 with rigid substrate is simulated. A indent depth of 0.02 is
applied. The Young’s modulus F and Poisson’s ratio p are set to be 2000.0 and 0.3. Theoretically, the
contacting surface cannot penetrating each other. Hypothetically, it can be viewed as a infinite force is
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applied on these surface. Therefore, the body force has the form

0, >0
by =14 23
2 k-r, r<0 (23)

where —k is a large number.
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Figure 4: The comparison of us and o922 of ABAQUS/CAE (a,c) and body force method for &k = —200 (b,d)
in the Hertz contact simulation.
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Figure 5: The comparison of force-depth curves of Hertz contact of ABAQUS/CAE and body force method.
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Fig. 4| shows the comparison of us and o292 plots calculated from ABAQUS/CAE and the body force
method with & = —200. As we can see, the distribution of us and o9s is the same, but the magnitude is
different. The result of body force method converges to that of ABAQUS/CAE as the slope k decreases.
This is reflected in the comparison of force-depth curves, as shown in Fig. [l As the slope k decreases from
-200 to -2000, the difference of force-depth curve of ABAQUS/CAE and body force method becomes smaller
and smaller.

5 Adhesive contact

In this section, we study the adhesive contact through the method of Lennard-Jones type body force, as
descried in Sec. [l As predicted by JKR theory, there exist “pull-in” and “pull-off” instabilities during the
loading and unloading of the tip due to the adhesive interactions. To overcome the convergence problem in
the numerical simulation, a “viscosity” term is added to the body force, i.e.,

= baco |2 (=2 ) ()] (14 g 24)
i et 5\ x; +u; 2 \x; +u; ndt '

where 7 is a small number. Accordingly, the force vector B¢ and stiffness matrix K2, become
10 4
1 o 1 o
B =— | diaco | = - =
' /vO Z20[5 (xz+uz> 2<xi+ui)

204 2010 Auy;
KB —=— [ & — 1 L) NeNb dV;
aibk /Vo 2kC0 {(%‘4‘%‘)5 (Jﬁi—FUi)n] ( +n At) 0

1 o | o 4
— [ dakco 3 -5
Vo T+ uy 2 \z +uy

In the simulation, a 2D tip is moving in the -é5 direction and subjected to the body force as described by
Eq. The parameters o and 7 are taken to be 10 nm and 0.01, respectively. The parameters A and k

Au;
<1 1 At ) N dV, (25)

and

(26)

n a nrb
—N*N°d
At Vo

are taken to be 0.50 and 0. The material is described by Neo-Hookean model. The shear modulus is 0.5
MPa. The work of adhesion of the material is ~ 1 mJ/m2. Equivalently, the constant ¢y is taken to be
3.132 x 102. The force-displacement curve during the loading is shown in Fig. @ As we can see, as the the
force decreases suddenly at a critical point when the “pull-in” instability occurs. Then the force increases
as the indent depth increases. The contour plot of o2 after the “pull-in” instability is shown in Fig. [7]

Remark: The convergence is a big issue in this project. The mesh should be very refined to be able
to resolve the body force field. Although the “pull-in” instability is captured in the loading process, the
computation does not converge during the unloading process, hence the “pull-off” instability is not shown
in the result. A more plausible way is to do the dynamic simulation by using VUEL subroutine.
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Figure 6: The force-displacement curve of the adhesive contact.
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Figure 7: The contour plot of g95 after the “pull-in” instability.
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